摘要翻译:
给出了标准遗传密码演化的启发式图。它以一种类似原子能级的方式结合了对称性破裂的物理概念,与克里克关于密码起源和演化的原始想法以及氨基酸在演化过程中出现的时间顺序一致,这是从已知实验结果与理论推测混合的工作中推断出来的。根据图的建议,我们提出了一个基于汉密尔顿四元数的代码的数学表示,因为它现在一天。描述中的中心对象是密码子函数,它以这样一种方式为每个氨基酸分配一个整数四元数,以保持观察到的代码退化。我们以蛋白质的折叠为例,强调氨基酸的四元数表示的优点。为此,我们提出了一种从四元数序列到蛋白质三维结构的算法,该算法可以与存储在蛋白质数据库中的相应实验结果进行比较。在我们的判据中,用四元数表示的遗传密码的数学表示是值得考虑的,因为它不仅描述了遗传密码的大部分已知性质,而且还开辟了主要从四元数与旋转之间的密切关系中得到的新的观点。
---
英文标题:
《Quaternionic representation of the genetic code》
---
作者:
C. Manuel Carlevaro, Ramiro M. Irastorza and Fernando Vericat
---
最新提交年份:
2015
---
分类信息:
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
一级分类:Physics 物理学
二级分类:Biological Physics 生物物理学
分类描述:Molecular biophysics, cellular biophysics, neurological biophysics, membrane biophysics, single-molecule biophysics, ecological biophysics, quantum phenomena in biological systems (quantum biophysics), theoretical biophysics, molecular dynamics/modeling and simulation, game theory, biomechanics, bioinformatics, microorganisms, virology, evolution, biophysical methods.
分子生物物理、细胞生物物理、神经生物物理、膜生物物理、单分子生物物理、生态生物物理、生物系统中的量子现象(量子生物物理)、理论生物物理、分子动力学/建模与模拟、博弈论、生物力学、生物信息学、微生物、病毒学、进化论、生物物理方法。
--
---
英文摘要:
A heuristic diagram of the evolution of the standard genetic code is presented. It incorporates, in a way that resembles the energy levels of an atom, the physical notion of broken symmetry and it is consistent with original ideas by Crick on the origin and evolution of the code as well as with the chronological order of appearence of the amino acids along the evolution as inferred from work that mixtures known experimental results with theoretical speculations. Suggested by the diagram we propose a Hamilton quaternions based mathematical representation of the code as it stands now-a-days. The central object in the description is a codon function that assigns to each amino acid an integer quaternion in such a way that the observed code degeneration is preserved. We emphasize the advantages of a quaternionic representation of amino acids taking as an example the folding of proteins. With this aim we propose an algorithm to go from the quaternions sequence to the protein three dimensional structure which can be compared with the corresponding experimental one stored at the Protein Data Bank. In our criterion the mathematical representation of the genetic code in terms of quaternions merits to be taken into account because it describes not only most of the known properties of the genetic code but also opens new perspectives that are mainly derived from the close relationship between quaternions and rotations.
---
PDF链接:
https://arxiv.org/pdf/1505.04656