全部版块 我的主页
论坛 经济学人 二区 高级会员区 学者专栏
17973 47
2013-07-16
热烈欢迎厦门大学王亚南经济研究院钟威老师7月17日15点接受人大经济论坛的在线访谈活动。
感谢钟老师抽出时间和大家进行在线的学术交流。
大家现在可以在下面回复提问。
欢迎大家热烈提问。
PS:的问题提问者会获得50论坛币的奖励
VIP,不止是论坛币!!!


钟威Wei Zhong (William),Assistant Professor.
The Wang Yanan Institute for Studies in Economics (WISE) Department of Statistics, School of Economics(SOE)Xiamen University

Education
Ph.D. in Statistics, Department of Statistics, Pennsylvania State University, State College, PA, 2012
Advisor: Professor Runze Li
B.S. in Statistics, School of Mathematical Sciences, Beijing Normal University(BNU), Beijing, China, 2008

Research Interests
> High/Ultra-high dimensional data analysis: large p small n problems
> Econometrics and Financial Econometrics
> Nonparametric and semiparametric models
> Large covariance matrix estimation
> Applications of statistics in business analytics, information science, finance etc.


Research Papers
[1] Runze Li, Wei Zhong*, Liping Zhu (2012). Feature Screening via Distance Correlation Learning. Journal of American Statistical Association, Vol. 107, No. 499. 1129-1139. Theory and Methods. (*corresponding author) [pdf] doi:10.1080/01621459.2012.695654.

[2] Danna Coffman, Wei Zhong* (2012). Assessing Mediation using Marginal Structural Models in the Presence of Confounding and Moderation. Psychological Methods, Vol. 17, No. 4, 642– 664. (*corresponding author)  [pdf] doi: 10.1037/a0029311.

[3] Jiahan Li, Wei Zhong* and Runze Li, Rongling Wu (2013). A Fast Algorithm for Detecting Gene-Gene Interactions in Genome-Wide Association Studies. Submitted and Revised for Annals of Applied Statistics. (*corresponding author)

[4] Wei Zhong*, Liping Zhu and Runze Li (2013). Robust Feature Screening and Selection for Ultrahigh Dimensional Heteroscedastic Single-Index Models. (*first author; Manuscript)

[5] Wei Zhong*, Liping Zhu (2013). An Iterative Approach to Distance Correlation Based Sure Independence Screening. (*first author; Manuscript)

Presentations
  • Invited talk, Southwestern University of Finance and Economics, Chengdu, China, March 2013.
  • Invited talk, Capital Normal University, Beijing, China,  January 2013.
  • Joint Statistical Meetings(JSM), San Diego, CA, August 2012.
  • International Forum on Modern Statistics and Econometrics, Xiamen University, August 2012.
  • Invited talk, Beijing Normal University, Beijing, China, June 2012.
  • Joint Statistical Meetings(JSM), Miami Beach, FL, August 2011.
  • The 2011 Rao Prize Conference, PSU, State College, PA, May 2011.
  • ENAR Annual Statistical Meetings, Miami, FL. March 2011.

附件: 您需要登录才可以下载或查看附件。没有帐号?我要注册
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2013-7-16 16:37:05
坛友tony2008:
请问国内的高频交易发展前景如何,如何做好统计套利,寻找 Alpha?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-7-16 16:37:23
坛友sen1898114:
请教钟老师:用三点平滑处理后的数据做出预测值以后,如何还原?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-7-16 16:37:41
坛友zhoubuer2008:
那俺弱弱的问一个问题吧:对于变量数较多,样本数目极少的情况,如何对变量进行降维处理。例如:变量数有29个,而样本数目只有14组,传统的主成分分析和因子分析完全无能为力,怎么破?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-7-16 16:37:45
坛友zhoubuer2008:
那俺弱弱的问一个问题吧:对于变量数较多,样本数目极少的情况,如何对变量进行降维处理。例如:变量数有29个,而样本数目只有14组,传统的主成分分析和因子分析完全无能为力,怎么破?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-7-16 18:49:46
我想问一下,对于多维数据的处理,降维除了用主成分,因子分析,神经网络之外还有什么其他的方法比较常用的。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群