摘要翻译:
本文提出了马尔可夫变分,这是一种光滑性测度,它提供了图形信号光滑性的概率解释。然后利用这一度量来开发一个图形信号插值的优化框架。我们的方法是基于扩散嵌入向量和扩散映射与图上信号处理之间的联系。针对大图的扩散嵌入向量的计算成本较高的问题,我们提出了一种基于NYSTR扩展的图上信号插值的有效方法。我们在MNIST数据集和美国日平均温度数据集上演示了我们的方法。我们的方法在这两个数据集上都优于现有的图信号插值技术,并且我们的计算有效重建实现了略微降低的精度和较大的计算加速率。
---
英文标题:
《A Markov Variation Approach to Smooth Graph Signal Interpolation》
---
作者:
Ayelet Heimowitz and Yonina C. Eldar
---
最新提交年份:
2020
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science 计算机科学
二级分类:Social and Information Networks 社会和信息网络
分类描述:Covers the design, analysis, and modeling of social and information networks, including their applications for on-line information access, communication, and interaction, and their roles as datasets in the exploration of questions in these and other domains, including connections to the social and biological sciences. Analysis and modeling of such networks includes topics in ACM Subject classes F.2, G.2, G.3, H.2, and I.2; applications in computing include topics in H.3, H.4, and H.5; and applications at the interface of computing and other disciplines include topics in J.1--J.7. Papers on computer communication systems and network protocols (e.g. TCP/IP) are generally a closer fit to the Networking and Internet Architecture (cs.NI) category.
涵盖社会和信息网络的设计、分析和建模,包括它们在联机信息访问、通信和交互方面的应用,以及它们作为数据集在这些领域和其他领域的问题探索中的作用,包括与社会和生物科学的联系。这类网络的分析和建模包括ACM学科类F.2、G.2、G.3、H.2和I.2的主题;计算应用包括H.3、H.4和H.5中的主题;计算和其他学科接口的应用程序包括J.1-J.7中的主题。关于计算机通信系统和网络协议(例如TCP/IP)的论文通常更适合网络和因特网体系结构(CS.NI)类别。
--
---
英文摘要:
In this paper we present the Markov variation, a smoothness measure which offers a probabilistic interpretation of graph signal smoothness. This measure is then used to develop an optimization framework for graph signal interpolation. Our approach is based on diffusion embedding vectors and the connection between diffusion maps and signal processing on graphs. As diffusion embedding vectors may be expensive to compute for large graphs, we present a computationally efficient method, based on the Nystr\"{o}m extension, for interpolation of signals over a graph. We demonstrate our approach on the MNIST dataset and a dataset of daily average temperatures around the US. We show that our method outperforms state of the art graph signal interpolation techniques on both datasets, and that our computationally efficient reconstruction achieves slightly reduced accuracy with a large computational speedup.
---
PDF链接:
https://arxiv.org/pdf/1806.03174