摘要翻译:
设X是数域k上连通线性代数群G′的齐次空间,包含一个k-点X。假定G′中x的稳定器是连通的。利用Colliot-Th\'el\'ene最近提出的拟平凡群的概念,我们可以用X=G/H的形式表示X,其中G是拟平凡K-群,H是G的连通K-子群。设S是K的有限位集。应用[B2]的结果,用H的最大复环商T计算了X关于S的弱逼近的缺陷。特别地,我们证明了如果T在k的一个元循环扩张上分裂,则X具有弱逼近性质。我们还证明了任何具有连通稳定器的齐次空间X(不对T作任何假设)具有实逼近性质。
---
英文标题:
《The defect of weak approximation for homogeneous spaces. II》
---
作者:
Mikhail Borovoi
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let X be a homogeneous space of a connected linear algebraic group G' over a number field k, containing a k-point x. Assume that the stabilizer of x in G' is connected. Using the notion of a quasi-trivial group, recently introduced by Colliot-Th\'el\`ene, we can represent X in the form X=G/H, where G is a quasi-trivial k-group and H is a connected k-subgroup of G. Let S be a finite set of places of k. Applying results of [B2], we compute the defect of weak approximation for X with respect to S in terms of the biggest toric quotient T of H. In particular, we show that if T splits over a metacyclic extension of k, then X has the weak approximation property. We show also that any homogeneous space X with connected stabilizer (without assumptions on T) has the real approximation property.
---
PDF链接:
https://arxiv.org/pdf/0804.4767