摘要翻译:
利用两个本原解,给出了一个6变量的5次齐次任意对称diophantine方程的参数解。然后通过证明以下结果,我们将这种方法推广到任意奇次的对称形式。(1)$6\cdot2^{n-5}$变量中奇数次$n\ge5$的每一对称形式都有依赖于$2n-8$参数的有理参数解。(2)设$f(x_1,...,x_N)$为$n=6\cdot2^{n-4}$变量中奇数次$n\ge5$的对称形式,设$q$为任意有理数。那么方程$f(x_i)=q$有一个有理参数解,它依赖于$2n-6$参数。后一个结果可以看作是这类形式的一个Waring型问题的解决。
---
英文标题:
《Symmetric homogeneous diophantine equations of odd degree》
---
作者:
M. A. Reynya
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We find a parametric solution of an arbitrary symmetric homogeneous diophantine equation of 5th degree in 6 variables using two primitive solutions. We then generalize this approach to symmetric forms of any odd degree by proving the following results. (1) Every symmetric form of odd degree $n\ge 5$ in $6 \cdot 2^{n-5}$ variables has a rational parametric solution depending on $2n-8$ parameters. (2) Let $F(x_1, ..., x_N)$ be a symmetric form of odd degree $n\ge 5$ in $N=6 \cdot 2^{n-4}$ variables, and let $q$ be any rational number. Then the equation $F(x_i)=q$ has a rational parametric solution depending on $2n-6$ parameters. The latter result can be viewed as a solution of a problem of Waring type for this class of forms.
---
PDF链接:
https://arxiv.org/pdf/0809.3973