摘要翻译:
设X是X的射影簇,$\sigma$是X的自同构,L是X上的$\sigma$-满可逆丛,Z是X的闭子方案。在扭曲齐次坐标环$B=B(X,L,\sigma)$内,设I是B的截面在Z上消失的右理想。在Z和$\sigma$上的温和条件下,R是B中I的理想化器:B的极大子环,其中I是双边理想。给出了Z和$\sigma$的几何条件,证明了如果Z和$\sigma$在某种意义上是足够一般的,那么R是左和右noetherian的,具有有限的左和右上同调维数,是强右noetherian但不是强左noetherian的,满足右$\chi_d$(其中d=\codim Z)但不满足左$\chi_1$。我们还给出了右上同调维数为无穷大的右noetherian环的一个例子,部分回答了Stafford和Van den Bergh的一个问题。这推广了Rogalski在Z是$\mathbb{P}^d$中的一个点的情况下的结果。
---
英文标题:
《Geometric idealizers》
---
作者:
Susan J. Sierra
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Rings and Algebras 环与代数
分类描述:Non-commutative rings and algebras, non-associative algebras, universal algebra and lattice theory, linear algebra, semigroups
非交换环与代数,非结合代数,泛代数与格论,线性代数,半群
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let X be a projective variety, $\sigma$ an automorphism of X, L a $\sigma$-ample invertible sheaf on X, and Z a closed subscheme of X. Inside the twisted homogeneous coordinate ring $B = B(X, L, \sigma)$, let I be the right ideal of sections vanishing at Z. We study the subring R = k + I of B. Under mild conditions on Z and $\sigma$, R is the idealizer of I in B: the maximal subring of B in which I is a two-sided ideal. We give geometric conditions on Z and $\sigma$ that determine the algebraic properties of R, and show that if Z and $\sigma$ are sufficiently general, in a sense we make precise, then R is left and right noetherian, has finite left and right cohomological dimension, is strongly right noetherian but not strongly left noetherian, and satisfies right $\chi_d$ (where d = \codim Z) but fails left $\chi_1$. We also give an example of a right noetherian ring with infinite right cohomological dimension, partially answering a question of Stafford and Van den Bergh. This generalizes results of Rogalski in the case that Z is a point in $\mathbb{P}^d$.
---
PDF链接:
https://arxiv.org/pdf/0809.3971