摘要翻译:
本文讨论了Veronese关于有理法线的一个著名结果的推广。更准确地说,给出一个线性空间的集合,在$\pp^n$中,我们研究了有理法线与构型的每个分量最大相交的存在性。我们介绍了不同的方法来证明这类曲线的存在性和不存在性。我们还展示了如何将这些技术应用于Segre-Veronese品种的缺陷性研究。
---
英文标题:
《On rational normal curves in projective space》
---
作者:
E. Carlini, M. V. Catalisano
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this paper we consider a generalization of a well known result by Veronese about rational normal curves. More precisely, given a collection of linear spaces in $\PP^n$ we study the existence of rational normal curves intersecting each component of the configuration maximally. We introduce different methods to show existence and non-existence of such curves. We also show how to apply these techniques to the study of defectivity of Segre-Veronese varieties.
---
PDF链接:
https://arxiv.org/pdf/0805.4126