英文标题:
《Constrained Optimal Transport》
---
作者:
Ibrahim Ekren and H. Mete Soner
---
最新提交年份:
2017
---
英文摘要:
The classical duality theory of Kantorovich and Kellerer for the classical optimal transport is generalized to an abstract framework and a characterization of the dual elements is provided. This abstract generalization is set in a Banach lattice $\\cal{X}$ with a order unit. The primal problem is given as the supremum over a convex subset of the positive unit sphere of the topological dual of $\\cal{X}$ and the dual problem is defined on the bi-dual of $\\cal{X}$. These results are then applied to several extensions of the classical optimal transport.
---
中文摘要:
将Kantorovich和Kellerer关于经典最优输运的经典对偶理论推广到一个抽象的框架中,并给出了对偶元素的一个刻画。这个抽象泛化是在一个具有序单位的Banach格$\\cal{X}$中设置的。将原问题定义为$\\ cal{X}$拓扑对偶的正单位球面的凸子集上的上确界,并将对偶问题定义在$\\ cal{X}$的双对偶上。然后将这些结果应用于经典最优运输的几个扩展。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Functional Analysis 功能分析
分类描述:Banach spaces, function spaces, real functions, integral transforms, theory of distributions, measure theory
Banach空间,函数空间,实函数,积分变换,分布理论,测度理论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->