英文标题:
《Model-free bounds on Value-at-Risk using extreme value information and
statistical distances》
---
作者:
Thibaut Lux, Antonis Papapantoleon
---
最新提交年份:
2018
---
英文摘要:
We derive bounds on the distribution function, therefore also on the Value-at-Risk, of $\\varphi(\\mathbf X)$ where $\\varphi$ is an aggregation function and $\\mathbf X = (X_1,\\dots,X_d)$ is a random vector with known marginal distributions and partially known dependence structure. More specifically, we analyze three types of available information on the dependence structure: First, we consider the case where extreme value information, such as the distributions of partial minima and maxima of $\\mathbf X$, is available. In order to include this information in the computation of Value-at-Risk bounds, we utilize a reduction principle that relates this problem to an optimization problem over a standard Fr\\\'echet class, which can then be solved by means of the rearrangement algorithm or using analytical results. Second, we assume that the copula of $\\mathbf X$ is known on a subset of its domain, and finally we consider the case where the copula of $\\mathbf X$ lies in the vicinity of a reference copula as measured by a statistical distance. In order to derive Value-at-Risk bounds in the latter situations, we first improve the Fr\\\'echet--Hoeffding bounds on copulas so as to include this additional information on the dependence structure. Then, we translate the improved Fr\\\'echet--Hoeffding bounds to bounds on the Value-at-Risk using the so-called improved standard bounds. In numerical examples we illustrate that the additional information typically leads to a significant improvement of the bounds compared to the marginals-only case.
---
中文摘要:
我们推导了$\\varphi(\\mathbf X)$的分布函数的界,因此也推导了风险值的界,其中$\\varphi$是一个聚合函数,$\\mathbf X=(X_1,dots,X_d)$是一个具有已知边缘分布和部分已知依赖结构的随机向量。更具体地说,我们分析了依赖结构上的三种可用信息:首先,我们考虑了极值信息的情况,例如$\\mathbf X$的部分最小值和最大值的分布。为了在计算风险值边界时包含此信息,我们利用了一个简化原则,将此问题与标准Fr趶echet类上的优化问题联系起来,然后可以通过重排算法或使用分析结果来解决该问题。其次,我们假设$\\mathbf X$的copula在其域的子集上是已知的,最后我们考虑$\\mathbf X$的copula位于由统计距离测量的参考copula附近的情况。为了推导出后一种情况下的风险值界限,我们首先改进了copulas上的Fr?echet-hoefffding界限,以便包含关于依赖结构的额外信息。然后,我们使用所谓的改进标准边界,将改进的Fr\\echet-hoeffing边界转换为风险值的边界。在数值例子中,我们说明了与仅边缘情况相比,附加信息通常会导致边界的显著改进。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
PDF下载:
-->