英文标题:
《Classes of elementary function solutions to the CEV model. I》
---
作者:
Evangelos Melas
---
最新提交年份:
2018
---
英文摘要:
The CEV model subsumes some of the previous option pricing models. An important parameter in the model is the parameter b, the elasticity of volatility. For b=0, b=-1/2, and b=-1 the CEV model reduces respectively to the BSM model, the square-root model of Cox and Ross, and the Bachelier model. Both in the case of the BSM model and in the case of the CEV model it has become traditional to begin a discussion of option pricing by starting with the vanilla European calls and puts. In the case of BSM model simpler solutions are the log and power solutions. These contracts, despite the simplicity of their mathematical description, are attracting increasing attention as a trading instrument. Similar simple solutions have not been studied so far in a systematic fashion for the CEV model. We use Kovacic\'s algorithm to derive, for all half-integer values of b, all solutions \"in quadratures\" of the CEV ordinary differential equation. These solutions give rise, by separation of variables, to simple solutions to the CEV partial differential equation. In particular, when b=...,-5/2,-2,-3/2,-1, 1, 3/2, 2, 5/2,..., we obtain four classes of denumerably infinite elementary function solutions, when b=-1/2 and b=1/2 we obtain two classes of denumerably infinite elementary function solutions, whereas, when b=0 we find two elementary function solutions. In the derived solutions we have also dispensed with the unnecessary assumption made in the the BSM model asserting that the underlying asset pays no dividends during the life of the option.
---
中文摘要:
CEV模型包含了一些以前的期权定价模型。模型中的一个重要参数是参数b,即波动弹性。当b=0、b=-1/2和b=-1时,CEV模型分别简化为BSM模型、Cox和Ross的平方根模型和Bachelier模型。无论是BSM模型还是CEV模型,从普通的欧洲看涨期权和看跌期权开始讨论期权定价已成为传统。对于BSM模型,更简单的解决方案是日志和电源解决方案。尽管这些合约的数学描述很简单,但作为一种交易工具,正吸引着越来越多的关注。迄今为止,还没有系统地研究CEV模型的类似简单解。我们使用Kovacic算法推导出,对于b的所有半整数值,CEV常微分方程的所有“正交”解。通过分离变量,这些解产生CEV偏微分方程的简单解。特别是,当b=-5/2,-2,-3/2,-1, 1, 3/2, 2, 5/2,..., 我们得到了四类可数无穷的初等函数解,当b=-1/2和b=1/2时,我们得到了两类可数无穷的初等函数解,而当b=0时,我们得到了两类可数无穷的初等函数解。在导出的解决方案中,我们还免除了BSM模型中不必要的假设,即标的资产在期权有效期内不支付股息。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->