英文标题:
《Non-concave optimal investment and no-arbitrage: a measure theoretical
approach》
---
作者:
Romain Blanchard, Laurence Carassus, Mikl\\\'os R\\\'asonyi
---
最新提交年份:
2016
---
英文摘要:
We consider non-concave and non-smooth random utility functions with do- main of definition equal to the non-negative half-line. We use a dynamic pro- gramming framework together with measurable selection arguments to establish both the no-arbitrage condition characterization and the existence of an optimal portfolio in a (generically incomplete) discrete-time financial market model with finite time horizon. In contrast to the existing literature, we propose to consider a probability space which is not necessarily complete.
---
中文摘要:
我们考虑定义为非负半直线的非凹和非光滑随机效用函数。我们使用一个动态规划框架,结合可测量的选择参数,在一个具有有限时间范围的(一般不完全)离散时间金融市场模型中,建立了无套利条件特征和最优投资组合的存在性。与现有文献相比,我们建议考虑一个不一定完全的概率空间。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->