全部版块 我的主页
论坛 经济学人 二区 外文文献专区
731 34
2022-05-06
英文标题:
《Drawdown: From Practice to Theory and Back Again》
---
作者:
Lisa R. Goldberg and Ola Mahmoud
---
最新提交年份:
2016
---
英文摘要:
  Maximum drawdown, the largest cumulative loss from peak to trough, is one of the most widely used indicators of risk in the fund management industry, but one of the least developed in the context of measures of risk. We formalize drawdown risk as Conditional Expected Drawdown (CED), which is the tail mean of maximum drawdown distributions. We show that CED is a degree one positive homogenous risk measure, so that it can be linearly attributed to factors; and convex, so that it can be used in quantitative optimization. We empirically explore the differences in risk attributions based on CED, Expected Shortfall (ES) and volatility. An important feature of CED is its sensitivity to serial correlation. In an empirical study that fits AR(1) models to US Equity and US Bonds, we find substantially higher correlation between the autoregressive parameter and CED than with ES or with volatility.
---
中文摘要:
最大支取,即从峰值到谷底的最大累积损失,是基金管理行业最广泛使用的风险指标之一,但在风险度量方面是最不发达的指标之一。我们将提款风险形式化为条件预期提款(CED),这是最大提款分布的尾部平均值。我们证明了CED是一个一级正同质风险度量,因此它可以线性地归因于各种因素;和凸性,因此可以用于定量优化。我们实证研究了基于CED、预期缺口和波动性的风险归因差异。CED的一个重要特征是它对序列相关性的敏感性。在一项将AR(1)模型与美国股票和美国债券相匹配的实证研究中,我们发现自回归参数与CED之间的相关性显著高于与ES或波动性之间的相关性。
---
分类信息:

一级分类:Quantitative Finance        数量金融学
二级分类:Portfolio Management        项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Quantitative Finance        数量金融学
二级分类:Mathematical Finance        数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
一级分类:Quantitative Finance        数量金融学
二级分类:Statistical Finance        统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--

---
PDF下载:
-->
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2022-5-6 04:16:52
缩编:从实践到理论,然后再回来(即将出版的《数学与金融经济学》杂志)丽莎·R·戈德伯甘德·奥拉·马哈茂达布斯特拉特(LISA R.GOLDBERGAND OLA MAHMOUDAbstract)。最大支取,即从峰值到谷底的最大累积损失,是基金管理行业最广泛使用的风险指标之一,但在风险度量方面发展最少。我们将提款风险形式化为条件预期提款(CED),这是最大提款分布的尾部平均值。我们证明CED是一个一级正同质风险度量,因此它可以线性地归因于各种因素;和凸性,因此可以用于定量优化。我们将根据CED、预期缺口和波动性,实证研究风险归因的差异。CED的一个重要特征是它对序列相关性的敏感性。在一项将AR(1)模型应用于美国股票和美国债券的实证研究中,我们发现自回归参数与CED之间的相关性显著高于与ES或波动性之间的相关性。关键词:缩编;有条件的预期缩编;偏差测量;风险归因;序列相关性潜在利益冲突的披露:作者声明他们没有利益冲突。加州大学伯克利分校统计与经济系和风险管理研究中心,加利福尼亚州94720-3880,美国圣路易斯大学数学与统计学院。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-5-6 04:16:55
加伦,Bodanstrasse 6号,CH-9000,瑞士,加利福尼亚大学伯克利分校风险管理研究中心,加利福尼亚州埃文斯厅,邮编94720-3880,美国电子邮件地址:lrg@berkeley.edu,olamahmoud@berkeley.edu.Date:2016年9月22日。我们感谢Robert Anderson对本文中讨论的内容发表了富有洞察力的评论;感谢Alexeichelov、Stan Uryasev和Michael Zabarankin对这项工作之前草稿的反馈;感谢VladislavDubikovsky、Michael Hayes和M\'ark Horv\'ath对本文早期版本的贡献;托卡洛·阿塞尔比(Carlo Acerbi)就之前的草案提供了详细的意见;感谢《数学》和《金融经济学》的评委和编辑们的宝贵反馈。2缩编:从实践到理论,再回到图1.1。在特定路径上模拟投资组合的资产净值。一次大规模的撤资可能会迫使市场底部进行清算,而市场复苏的过程从未经历过。1.简介杠杆投资者容易陷入流动性陷阱:在市场突然下跌后无法获得资金,他可能被迫在不利的市场条件下出售有价值的头寸。这种经历在2007-2009年金融危机期间司空见惯,它重新将杠杆投资者和非杠杆投资者的注意力集中在一个重要的流动性陷阱上,即提款,这是固定期限内投资组合价值的最大跌幅(见图1.1)。如果出现大规模提款,在预期投资期结束时,常见的风险诊断,如波动性、风险价值和预期缺口,就不那么重要了。事实上,在对冲基金和大宗商品交易顾问(CTA)的世界中,被广泛引用的风险衡量标准之一是最大提取。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-5-6 04:16:59
在应用概率论的文献中,对水位下降的概念进行了深入研究,我们将在第1.1节中对其进行回顾。然而,在投资管理行业中,似乎不存在一种公认的数学方法来形成对未来潜在最大提款的预期。在风险和偏差度量的背景下进行的缩减未能吸引到用于其他更传统风险度量的同类应用研究。我们的目的是制定一个(i)数学上合理的和(ii)实际有用的提取风险度量。我们对提款风险的形式化是通过对时间范围内的连续时间累积收益进行建模来实现的∈ (0, ∞) 作为一个代表返回路径的随机过程X,应用了一个实值泛函,即条件期望下降。从数学上讲,过程X被转换为随机变量u(X),表示有限路径内的最大压降。在信心水平α∈ [0,1],然后将条件预期降深CEDα定义为预期最大降深:从实践到理论,再回到3,考虑到一些最大降深阈值DTα,即最大降深分布的α分位数被打破:CEDα(X)=E(u(X)|u(X)>DTα)。在定量风险度量方面,CED是Rockafellar等人(2002年、2006年)意义上的偏差度量。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-5-6 04:17:02
特别是,这意味着CED在拓扑组合权重方面是凸的,这意味着它促进了多样性,可以在优化器中使用。它也是一次齐次的,因此它支持欧拉函数定理下的线性风险归因。通过关注固定长度T内所有提款的最大值,我们解决了一个高度相关的风险管理问题,该问题每天都会影响到基金经理,他们问自己:在投资期限T内,资产净值的预期最大可能累积跌幅是多少?如果损失超过某个阈值,投资者可能会被迫清算。对于给定的投资期限T,有条件的预期提款表示超过阈值的预期累积损失,并且可以针对不同的密度水平进行测量。因为有条件的预期提款被定义为最大提款分布的尾部平均值,所以它是一个下行风险度量,与预期短缺完全类似,预期短缺是回报分布的尾部平均值。因此,预期缺口的大部分理论和实践都会转化为有条件的预期缩编。然而,我们将表明,下降具有内在的路径依赖性,可以解释连续相关性,而预期的短缺不能解释连续损失。1.1. 文献综述。在应用概率理论的文献中,以及在主动投资组合管理的研究中,已经对提取的概念进行了广泛的研究,我们将在下面对其进行回顾。然而,无论是在投资管理行业还是学术文献中,似乎都不存在一种公认的数学方法来预测未来潜在的最大提款。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-5-6 04:17:05
因此,在风险和偏差度量的背景下进行的缩减未能吸引到致力于其他更传统风险度量的同类应用研究。因此,我们的工作是对现有文献的补充,因为它开发了一个数学上合理且实用的提款风险度量。在应用概率论的文献中,对水位下降幅度的分析评估进行了广泛的研究。据我们所知,最早的布朗运动最大下降的数学分析出现在泰勒(1975)中,之后不久,莱霍茨基(1977)将其推广到时间均匀扩散过程。Douadyet al.(2000)和Magdon Ismail et al.(2004)分别推导了标准布朗运动和带漂移的布朗运动的有限级数展开式。Landriault等人(2015)将水位下降幅度的讨论扩展到研究布朗4水位下降的频率率:从实践到理论,再回到运动。Mijatovic和Pistorius(2012)分析了光谱负L’evy过程的下降。提取的概念,即衡量相对于运行最低值的最大累积收益,也进行了概率研究,尤其是就其与提取的关系而言;例如,见Hadjiliadis和Vecer(2006年)、Pospisil等人(2009年)和Zhang和Hadjiliadis(2010年)。在数学金融研究中,减少主动投资组合管理中的支取已经受到了相当大的关注。Grossman和Zhou(1993)考虑了一个受提取约束的资产分配问题;Cvitanic和Karatzas(1995)将同一优化问题扩展到多变量框架;切赫洛夫等人。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群