英文标题:
《Election predictions are arbitrage-free: response to Taleb》
---
作者:
Aubrey Clayton
---
最新提交年份:
2019
---
英文摘要:
Taleb (2018) claimed a novel approach to evaluating the quality of probabilistic election forecasts via no-arbitrage pricing techniques and argued that popular forecasts of the 2016 U.S. Presidential election had violated arbitrage boundaries. We show that under mild assumptions all such political forecasts are arbitrage-free and that the heuristic that Taleb\'s argument was based on is false.
---
中文摘要:
Taleb(2018)提出了一种通过无套利定价技术评估概率选举预测质量的新方法,并认为2016年美国总统选举的流行预测违反了套利界限。我们证明,在温和的假设下,所有这些政治预测都是无套利的,塔勒布的论点所基于的启发是错误的。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
PDF下载:
-->