英文标题:
《Scenario-based Risk Evaluation》
---
作者:
Ruodu Wang and Johanna F. Ziegel
---
最新提交年份:
2021
---
英文摘要:
Risk measures such as Expected Shortfall (ES) and Value-at-Risk (VaR) have been prominent in banking regulation and financial risk management. Motivated by practical considerations in the assessment and management of risks, including tractability, scenario relevance and robustness, we consider theoretical properties of scenario-based risk evaluation. We propose several novel scenario-based risk measures, including various versions of Max-ES and Max-VaR, and study their properties. We establish axiomatic characterizations of scenario-based risk measures that are comonotonic-additive or coherent and an ES-based representation result is obtained. These results provide a theoretical foundation for the recent Basel III & IV market risk calculation formulas. We illustrate the theory with financial data examples.
---
中文摘要:
在银行监管和金融风险管理中,预期缺口(ES)和风险价值(VaR)等风险衡量指标一直很突出。基于风险评估和管理中的实际考虑,包括可跟踪性、情景相关性和稳健性,我们考虑了基于情景的风险评估的理论属性。我们提出了几种新的基于情景的风险度量,包括各种版本的最大ES和最大VaR,并研究了它们的性质。我们建立了基于情景的风险度量的公理化特征,这些风险度量是共单调的加性或相干的,并得到了基于ES的表示结果。这些结果为新巴塞尔协议III和IV的市场风险计算公式提供了理论基础。我们用财务数据举例说明了这一理论。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
PDF下载:
-->